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Abstract. In this paper we propose a method to construct a virtual
sequence for a camera moving through a static environment given an
input sequence from a different camera trajectory. Existing image-based
rendering techniques can generate photorealistic images given a set of
input views, though the output images almost unavoidably contain small
regions where the colour has been incorrectly chosen. In a single image
these artifacts are often hard to spot, but become more obvious when
viewing a real image with its virtual stereo pair, and even more so when
when a sequence of novel views is generated, since the artifacts are rarely
temporally consistent.

To address this problem of consistency, we propose a new spatio-temporal
approach to novel video synthesis. The pixels in the output video se-
quence are modelled as nodes of a 3–D graph. We define an MRF on the
graph which encodes photoconsistency of pixels as well as texture priors
in both space and time. Unlike methods based on scene geometry which
yield highly connected graphs, our approach results in a graph whose
degree is independent of scene structure. The MRF energy is therefore
tractable and we solve it for the whole sequence using a state-of-the-art
message passing optimisation algorithm. We demonstrate the effective-
ness of our approach in reducing temporal artifacts.

1 Introduction

This paper addresses the problem of reconstruction of a video sequence from an
arbitrary sequence of viewpoints given an input video sequence. In particular,
we focus on the reconstruction of a stereoscopic pair of a given input sequence
captured by a moving camera through a static environment. This has application
to the generation of 3-D content from commonly available monocular movies and
videos for use with advanced 3-D displays.

Existing image-based rendering techniques can generate photorealistic images
given a set of input views. Though the best results apparently have remarkable
fidelity, closer inspection almost invariably reveals pixels or regions where incor-
rect colours have been rendered, as illustrated in Fig. 1. These are often, but not
always, associated with occlusion boundaries, and while they are often hard to
see in a single image, they become very obvious when a sequence of novel views
is generated, since the artifacts are rarely spatio-temporally consistent. We pro-
pose to solve the problem via a Markov Random Field energy minimisation over



a video sequence with the aim of preserving spatio-temporal consistency and
coherence throughout the rendered frames.

Two broad approaches to the novel-view synthesis problem are apparent in
the literature: (i) multi-view scene reconstruction followed by rendering from the
resulting geometric model, and (ii) image-based rendering techniques which seek
simply to find the correct colour for a pixel. In both cases a data likelihood term
f(C, z) is defined over colour C and depth z which is designed to achieve a max-
imum at the correct depth and colour. In the multi-view stereo reconstruction
problem the aim is generally to find the correct depth, and [1] was the first to
suggest that this could be done elegantly for multiple input views by looking for
the depth that maximises colour agreement between the input images.

Recent approaches such as [2, 3] involve quasi-geometric models for 3–D re-
construction where occlusion is modelled as an outlier process. Approximate
inference techniques are then used to reconstruct the scene taking account of oc-
clusion. Realistic generative models using quasi-geometric models are capable of
rendering high quality images but lead to intractable minimisation problems [3].

More explicit reasoning about depth and occlusions is possible when an ex-
plicit volumetric model is reconstructed as in voxel carving such as [4, 5]. The
direct application of voxel carving or stereo with occlusion methods [6–8] to our
problem of novel video synthesis would, however, involve simultaneous optimi-
sation of the MRF energy with respect to depth and colour in the space-time

domain. The graph corresponding to the output video then becomes highly con-
nected as shown in Fig. 2-a for a row of each frame. Unfortunately however, avail-
able optimisation techniques for highly connected graphs with non-submodular
potentials are not guaranteed to reach a global solution [9].

In contrast, [10] marginalise the data likelihood over depth and thus have no
explicit geometric reasoning about the depth of pixels. This and similar methods
rely on photoconsistency regularised by photometric priors [10, 7] to generate
photorealistic images. The priors are designed to favour output cliques which
resemble samples in a texture library built from the set of input images.

It has recently been shown [11] that using small 2-pixel patch priors from
a local texture library can be as effective as the larger patches used in [10].
[11] converts the problem of optimising over all possible colours, to a discrete
labelling problem over modes of the photoconsistency function, referred to as
colour modes, which can be enumerated a priori. Since the texture library com-
prises only pairs of pixels, the maximum clique size is two, and tree-reweighted
message passing [12] can be used to solve for a strong minimum in spite of the
non-submodular potentials introduced by enumerating the colour modes.

We closely follow this latter, image-based rendering approach, but extend it
to sequences of images rather than single frames. We propose to define suitable
potential functions between spatially and temporally adjacent pixels. This, and
our demonstration of the subsequent benefits, form the main contribution of
this paper. We define an MRF in space-time for the output video sequence, and
optimise an energy function defined over the entire video sequence to obtain a
solution for the output sequence which is a strong local minimum of the energy



Individual MRF optimisation for each output frame

Our method: Using temporal priors for video synthesis

Fig. 1. A pair of consecutive frames from a synthesised sequence. Top row: individual
MRF optimisation for each output frame fails to ensure temporal consistency yielding
artifacts that are particularly evident when the sequence is viewed continuously. Bot-
tom row: Using temporal priors, as proposed in this paper, to optimise an MRF energy
over the entire video sequence reduces those effects. An example is circled.

function. Crucially, in contrast to methods based on depth information and 3-D
occlusion, our proposed framework has a graph with a depth-independent vertex
degree, as shown in Fig. 2-b. This results in a tractable optimisation over the
MRF and hence we have an affordable model for the temporal flow of colours in
the scene as the camera moves.

The remainder of this paper is organised as follows. In Section 2, we intro-
duce the graph and its corresponding energy function that we wish to minimise,
in particular the different potential terms. Section 3 gives implementation de-
tails, experimental results and a comparison of our method with (i) per-frame
optimisation, and (ii) a näıve, constant-colour prior.

2 Novel Video Synthesis Framework

We formulate the MRF energy using binary cliques with pairwise, texture-based
priors for temporal and spatial edges in the output video graph. Spatial edges
in the graph exist between 8-connected neighbourhood of pixels in each frame.
Temporal edges link pixels with the same coordinates in adjacent frames as
shown in Fig. 2-b. Therefore, the energy of the MRF can be expressed in terms
of the unary and binary potential functions for the set of labels (colours) F as
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Fig. 2. Temporal edges in an MRF graph for video sequence synthesis. a) Using a
3–D occlusion model all pixels on epipolar lines of pixels in adjacent frames must be
connected by temporal edges (here only four temporal edges per pixel are shown to
avoid clutter). b) Using our proposed temporal texture-based priors we can reduce the
degree of the graph to a constant.
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Fig. 3. a) Local texture library is built using epipolar lines in sorted input views I for
each pixel in the output video sequence. b) Local pairwise temporal texture dictionary
for two output pixels p and q connected by a temporal graph edge.

follows.

E(F) =
∑

p

φp(fp) + λ1

∑

p

∑

q∈Ns(p)

ψpq(fp, fq) + λ2

∑

p

∑

q∈Nt(p)

ψpq(fp, fq) (1)

where fp and fq are labels in the label set F , φ is the unary potential measuring
the photoconsistency and ψ encodes the pairwise priors for spatial and temporal
neighbours of pixel p denoted by Ns(p) and Nt(p) respectively. λ1 and λ2 are
weight coefficients for different priors. The output sequence is then given by the
optimal labelling F∗ through minimisation of E:

F∗ = argmin
F

{E(F)} (2)

Next, we first discuss the texture library for spatial and temporal terms and
introduce some notations and then define the unary and binary potentials.

2.1 Texture Library and Notations

To calculate the local texture library, we first find and sort subsets of the input
frames with respect to their distance to the output frames. We denote these sub-
sets by I. The input frame in I, which is closest to the output frame containing
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Fig. 4. The temporal transition of colours between pixels in two output frames. A
constant colour model between temporally adjacent output pixels p and q is clearly
invalid because of motion parallax. On the other hand, there is a good chance that the
local texture vocabulary comprising colour pairs obtained from the epipolar lines Tp

and Tq (respectively the epipolar lines in the corresponding input view of the stereo
pair) captures the correct colour combination, as shown in this case.

pixel p is denoted by I(p). Then for each pairwise clique of pixels p and q, the
local texture library is generated by bilinear interpolation of pixels on the clique
epipolar lines in I as illustrated in Fig. 3. For a pixel p the colour in input frame
k corresponding to the depth disparity z is denoted by Ck(z, p). The vocabulary
of the library is composed of the colour of the pixels corresponding to the same
depth on each epipolar line and is defined below.

T = {(Ci(z, p), Cj(z, q) ) | z = zmin, . . . , zmax , i = I(p), j = I(q)} (3)

we also define Tp as the epipolar line of pixel p in I(p),

Tp = {Ck(z, p) | z = zmin, . . . , zmax , k = I(p)}. (4)

2.2 Unary Potentials

Unary potential terms express the measure of agreement in the input views
for a hypothesised pixel colour. Since optimisation over the full colour space
can only be effectively achieved via slow, non-deterministic algorithms, we use
instead a technique proposed in [11] that finds a set of photoconsistent colour
modes. The optimisation is then over the choice of which mode, i.e. a discrete
labelling problem. These colour modes are denoted by fp for pixel p and using
their estimated depth z the unary potential is given by the photoconsistency of
fp in a set of close input views V :

φp(fp) =
∑

i∈V

ρ(||fp − Ci(z, p)||) (5)

where ρ(.) is a truncated quadratic robust kernel.



2.3 Binary Potentials

Binary (pair-wise) potentials in graph-based formulation of computer vision
problems often use the Potts model (piece-wise constant) to enforce smooth-
ness of the output (e.g. colour in segmentation algorithms, or depth in stereo
reconstruction). While the Potts model is useful as a regularisation term, its
application to temporal cliques is strictly incorrect. This is due to the relative
motion parallax between the frames as illustrated in Fig. 4. In general, the tem-
poral links marked by dotted lines between two pixels p and q for example do not
correspond to the same 3–D point and therefore colour coherency assumption
using the Potts model is invalid.

Instead, we propose to use texture-based priors to define pairwise potentials
in temporal edges. As shown in Fig. 4, a local texture library given by Eq. 3 for
the clique of pixels p and q is generated using epipolar lines Tp and Tq defined in
Eq. 4 in two successive input frames close to the output frames containing p and
q. This library contains the correct colour combination for the clique containing
p and q corresponding to two distinct 3-D points (marked by the dotted rectangle
in Fig. 4. This idea is valid for all temporal cliques in general scenes provided
that there exists a pair of successive input frames throughout the whole sequence
which can see the correct 3–D points for p and q.

Each pairwise potential term measures how consistent the pair of labels for
pixels p and q is with the (spatio-temporal) texture library. The potential is
taken to be the minimum over all pairs in the library, viz:

ψpq(fp, fq) = min
z

{ρ(||fp − Tp(z)||) + ρ(||fq − Tq(z)||)} . (6)

Note that the use of a robust kernel ρ(.) ensures that cases where a valid
colour combination does not exist are not overly penalised; rather, if a good
match cannot be found a constant penalty is used.

As explained above, exploiting texture-based priors enables us to establish a
valid model for temporal edges in the graph which is independent of the depth
and therefore avoid highly connected temporal nodes. This is an important fea-
ture of our approach which implies that the degree of the graph is independent
of the 3–D structure of the scene.

3 Implementation and Results

We verified the effectiveness of temporal priors for consistent novel video synthe-
sis in several experiments. We compare the generated views with and without
temporal priors. In all cases, the spatial terms for all 8-connected neighbours
in each frame in the MRF energy were similarly computed from texture-based
priors. Therefore the focus of our experiments is on the texture-based temporal
priors. We also show results from using a the simpler constant-colour prior (the
Potts model).

The energy function of Eq. 1 is minimised using a recently introduced en-
hanced version of tree-reweighted max-product message passing algorithm known
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Fig. 5. Top row, results obtained using our proposed texture-based temporal priors.
Middle row, using the Potts temporal priors. Bottom row, individual rendering of
frames. Columns (c) and (d) show the details of rendering. It can be noted that the
Potts model and individual optimisation fails on the sharp edges of the leaves.

as TRW-S algorithm [12] which can handle non submodular graph edge costs
and has guaranteed convergence properties. For an output video sequence with
n frame of size W ×H, the spatio-temporal graph would have n×W ×H ver-
tices and (n − 1) ×W × H temporal edges in the case of using texture-based
temporal priors or the Potts model. This is the minimum number of temporal
edge for a spatio-temporal MRF and any other prior based on depth with num-
ber of disparities z would require at least z × (n− 1) ×W ×H temporal edges,
where z is of the order of 10 to 100. Typical run time to process a space-time
volume of 15×100×100 pixels is 600 seconds on a P4 D 3.00GHz machine. The
same volume when treated as individual frames takes 30 × 15 = 450 seconds to
process.

The input video sequence is first calibrated using commercial camera track-
ing software1. The stereoscopic output virtual camera projection matrices are
then generated from input camera matrices by adding a horizontal offset to the
input camera centres. The colour modes as well as unary photoconsistency terms
given by Eq. 5 for each pixel in the output video are calculated using 8 closest
views in the input sequence. We also compute 8 subsets I’s for texture library
computation as explained in Section 2.3 with the lowest distance to the ensemble

1 Boujou, 2d3 Ltd.



of the n output camera positions. Finally in Eq. 1 we set λ1 to 1 and λ2 to 10
in our experiments.

Fig. 5 shows two synthesised frames of a video sequence of a tree and the
details of rendering around the leaves for different methods. Here, in the case
of temporal priors (textured-based and Potts) 5 frames of 300 × 300 pixels are
rendered by a single energy optimisation. In the detailed view, it can be noted
that the quality of the generated views using texture-based temporal priors has
improved especially around the edges of the leaves.

As another example, Fig. 6 shows some frames of the novel video synthesis
on the Edmontosaurus sequence using different techniques. Here the temporal
priors are used to render 11 frames of 200×200 pixels by a single energy optimi-
sation. The first row shows the results obtained using our proposed texture-based
temporal prior MRF. Using the Potts model for temporal edges generates more
artifacts as shown in the second row in Fig. 6. Finally the third rows show the
results obtained without any temporal priors and by individual optimisation of
each frame. It can be noted that the background is consistently seen through the
holes in the skull, while flickering artifacts occur in the case of the Potts prior
and individual optimisation. Here the output camera matrices are generated by
interpolation between the first and the last input camera positions. Finally Fig. 7
show the entire stereoscopic frames constructed using temporal priors over 15
frames.

4 Conclusion

We have introduced a new method for novel video rendering with optimisation in
space-time domain. We define a Markov Random Field energy minimisation for
rendering a video sequence which preserves temporal consistency and coherence
throughout the rendered frames. Our method uses a finite set of colours for
each pixel with their associated likelihood cost to find a global minimum energy
solution which satisfies prior temporal consistency constraints in the output
sequence.

In contrast to methods based on depth information and 3–D occlusion we
exploit texture-based priors on pairwise cliques to establish a valid model for
temporal edges in the graph. This approach is independent of the depth and
therefore results in a graph whose degree is independent of scene structure. As a
result and as supported by our experiments, our approach provides a method to
reduce temporal artifacts in novel video synthesis without resorting to approxi-
mate generative models and inference techniques to handle multiple depth maps.
Moreover, our algorithm can be extended to larger clique texture-based priors
while keeping the degree of the graph independent of the depth of the scene. This
requires sophisticated optimisation techniques which can handle larger cliques
such as [13, 14] and will be investigated in our future work. Quantitative anal-
ysis of the algorithm using synthetic/real stereo sequences is also envisaged to
further study the efficiency of temporal priors for video synthesis.



frame #1 frame #3 frame #5 frame #9

Our propose method: texture-based temporal priors

The Potts temporal priors

Individual optimisation per frame

Fig. 6. Synthesised Edmontosaurus sequence. First row, results obtained using our
proposed texture-based temporal priors. Second row, using the Potts temporal priors
creates some artifacts (frame #3). Third row, individual rendering of frames introduces
artifacts in the holes (the nose and the jaw). Also note that the quality of frame #5
has greatly improved thanks to the texture-based temporal priors.
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